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SEPARATION SCIENCE AND TECHNOLOGY, 16(1), pp. 75-80, 1981 

NOTE 

Can One Measure Rate Constants Using Chromatographic 
Methods? 

GEORGE H. WEISS 
NATIONAL INSTITUTES OF HEALTH 
BETHESDA, MARYLAND 20205 

Abstract 

It has recently been suggested that affinity chromotography can be used to 
measure rate constants from parameters determined from the elution curve. 
The analysis suggesting this possibility assumes that there is one type of reaction 
occurring and that steric factors can be ignored. In this paper a model is 
analyzed in which there can be a number of different binding sites. If one 
waits long enough, the resulting concentration profile tends toward a Gaussian 
form. This suggests that it would be experimentally very difficult to distinguish 
between single site and multiple site systems. Since steric factors undoubtedly 
operate, they would change the single site to the multiple site system. The 
implication of the analysis is that the proposed experiment does not necessarily 
measure the rate constants of interest. 

Giddings and Eyring appear to have been the first to analyze a stochastic 
model for elution chromatography ( I ) .  Subsequent studies of equivalent 
or similar models were made by MacQuarrie (2)  and Weiss (3). Continuum 
models somewhat similar to the stochastic theories were analyzed by Bak 
(4, van Holde (5), Cann, Kirkwood, and Brown (6), and undoubtedly 
many others. More recently Denizot and Delaage have given results for 
the original Giddings-Eyring model for the purpose of deriving kinetic 
parameters using affinity chromatography (7). Most of the authors cited 
above work with the two-state model in which the molecule being analyzed 
is assumed to be in one of two phases: mobile or stationary. MacQuarrie 
(2),  Weiss (3), and Giddings (8-10), have also presented results where 
n > 1 different kinds of binding can take place. The experiment suggested 
by Denizot and Delaage suggests that kinetic parameters can be deter- 
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mined from the elution profile. An alternative technique which would be 
more accurate for analytic purposes is that of the scanning experiment 
rather than the elution method. Although scanning techniques have not 
been applied to affinity chromatography, they have been successfully 
developed for gel chromatography by Ackers and his collaborators (11). 

Ideally, one would like to take steric factors into account in describing 
the motion of a molecule through the chromatographic column. This is 
clearly impossible in detail. Therefore, in order to take some account of 
these factors, a model will be adopted in which there are n different types 
of binding sites. In addition to allowing variations in the rate constants, 
the order of the reaction at  each binding site will be allowed to be arbitrary, 
in contrast with earlier models that assume only first-order reactions. The 
variations in model parameters give a phenomenological representation of 
the effects of steric factors on the chromatographic kinetics. The customary 
assumption of first-order kinetics would seem to ignore steric factors 
related to gel geometry. A further assumption in  the analysis is that 
molecules in the mobile phase do not necessarily travel a t  constant speed. 
Under these circumstances, if it is further assumed that successive sojourns 
in the mobile and stationary phases are for a finite average time, then 
when the number of binding events is large in the traversal of a column, 
the concentration profile for a single species tends toward the Gaussian 
form independent of the sojourn time distributions. With this simplifica- 
tion it becomes relatively easy to calculate the parameters determining the 
observed concentration profile and its development in time. It is assumed 
that the column has uniform properties, and that there are n > 1 different 
types of binding sites. As in the analyses cited above, it is assumed that the 
course of motion of a molecule through the column can be described as 
a succession of sojourns in the mobile and stationary phases, the time of 
each sojourn being a random variable. Let the probability that a single 
sojourn in the stationary phase will be between t and t + dt and that 
termination occurs by binding to a site of type j be aj( t )  dt. For example, 
if the binding events are first-order reactions with rate constants k , ,  k , ,  ..., 
k,, then 

aj(r )  = k j  exp [-(k, + k ,  + ... + k,)?] (1) 
Not ice that 

jr a j ( t )  dt = fi (2) 

where&. is the probability of binding to aj-site. The probability density 
for a single sojourn on aj-site will be denoted by Pj( t ) .  For first-order 
processes with rate constants k; ,  k; ,  ..., kk, Pi(?) = k(i exp ( - k J t ) .  The 
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MEASURING RATE CONSTANTS n 

probability that the displacement of a molecule in a single sojourn in the 
mobile phase lasting for a time t will be between x and x + dx will be 
denoted by g(x, t )  dx. When a molecule in the mobile phase is assumed 
to move at  uniform speed u, as is the case in the Giddings-Eyring model, 
then 

g(x, t )  = 6(x - u t )  (3) 
where 6(u) is the Dirac delta function. When the displacement occurs by 
means of a combination of constant convection and diffusion, 

1 (x  - ut)2 [- 4Dt ] g(x, t )  = - J4rrDt (4)  

More generally, it will be assumed that the average displacement in time f 
will be proportional to time, i.e., 

xg(x, t )dx  = ut 

and that the variance of displacement is also proportional to time, 

( 5 )  

m 

aX2(t) = [ x2g(x, t )  dx - v 2 t 2  = 2Dt (6) 
J - m  

The form of g used in Eq. (3) leads to d ( t )  = 0 while that in Eq. (4) 
allows us to interpret D as a diffusion constant. 

The idea behind the following calculation is straightforward. The total 
displacement at time t can be written 

x(t) = x1 + x2 + * * .  + Xj(r) + y ( t )  (7) 
where x, is the displacement in the mth completed sojourn in the mobile 
phase (which starts at the time at  which the molecule enters the mobile 
phase for the rnth time, and ends at the immediately following trapping), 
j ( t )  is the total number of complete cycles (a sojourn in the mobile phase 
followed by a sojourn in a stationary phase), and y ( t )  is the displacement 
in any uncompleted cycle. Let us assume that the sojourn times in both 
the mobile phase and in the stationary phases have finite first and second 
moments. This is a plausible assumption in the'context of chromatography, 
but is not necessarily valid for hopping transport in solids (12-1.5). The 
process defined in Eq. (7) is a cumulative process in the sense of Smith 
(16-18), so that we may adapt results that have been proved by him and 
others (19). Let t denote the average time spent in a complete cycle, let 
a2(t) denote the variance of this time, let x be the average displacement in 
a single cycle, let d(x) be the variance of that displacement, and let 
cov (x, t )  be the covariance of displacement and time. These quantities 
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will be calculated from the underlying model parameters after the results 
implied by Smith's analysis have been stated. 

The results to be given are valid in the limit of a large number of 
trappings. More precisely, they are valid when tit >> 1 where c is the 
average cycle time. Smith has shown that the first two moments of x ( t )  
are, asymptotically, 

- 1; a2(x(r)) - {cT2(x) + a2(t)  jT - 2: t cov (x,  t )  - 
x2 x 

plus terms that are small with respect to r / i .  Furthermore, x( t )  has an 
asymptotic Gaussian distribution with parameters given in this last 
equation. We therefore know what to expect on a macroscopic level. Next 
we must translate the parameters of the microscopic model into those 
appearing in Eq. (8). If the probability density for the time in a complete 
cycle is denoted by h(t), then, by our definitions, 

n f t  

h(t)  = C J uj(z)Bj(t - Z) dz 
j = 1  0 

(9) 

The joint density for the displacement in a single cycle, x, and the cycle 
time is 

f(x, t )  = c g(x, Z)a j (Z )B j ( r  - d~ (10) 
j = 1  " s '  0 

since motion only occurs in the mobile phase. These last two formulas 
enable us to calculate the parameters that appear in Eq. (8). If we define 
moments of the components of cycle time as 

then 

It is convenient to define the following moments averaged over all types 
of cycles: 

in terms of which Eq. (12) can be rewritten 

t = T +  T, 02( t )  = a2(T) + &T') (14) 
The calculation of moments of displacement is just slightly more 
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MEASURING RATE CONSTANTS 79 

complicated. Let us, for example, consider the evaluation of the expression 
for x :  

X = Jr dt Sm xf(x, t )  dx = u zccj(7)pj(t - T) dt (15) 
0 j =  1 

This latter expression can be written in terms of Laplace transforms 
evaluated at s = 0. It we set 

00 

ay(s) = e-"aj(t)  dt, pf(s) = 1 e-"pj(t)  dt (1 6)  Jr 0 

then K takes the form 

j =  1 s = o  

since pj*(0) = 1. This result together with Eq. (15) implies 

where 0 5 0 I 1. This intuitively reasonable result indicates that the 
motion of the peak is slowed up by time spent in the trapped state. The 
calculation of 02(x(t))  is only slightly more complicated and leads to the 
expression 

a2(x(t)) { ~ D T  + v2[(i - e)T - e ~ ' ] ~ } ( t / r )  (19) 
where 8 is defined in Eq. (18). We see that there are two contributions to 
the variance, the first being that due to diffusion and the second being that 
due to trapping processes that occur as the column is being traversed. 
Furthermore, the parameters appear only in the form of lumped moments, 
T, F ,  p, (T')2 and T'T, so that contributions from the different sites 
cannot be distinguished in the Gaussian limit. 

As is the case in elution chromatography, it would be experimentally 
impossible to distinguish between single and multiple site trapping 
without starting from a detailed theory of the transient processes. Thus 
it would appear that unless one could demonstrate independently of the 
chromatographic experiment that the single site model is an adequate 
description of what is going on in the column, and that steric factors are 
negligible, it would be unwise to use affinity chromatography to measure 
rate constants as suggested by Denizot and Delaage. The quantities 
measured in this way would be a complicated combination of many 
factors involving both local geometry and the rate constants. 
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