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Can One Measure Rate Constants Using Chromatographic
Methods?

GEORGE H. WEISS

NATIONAL INSTITUTES OF HEALTH
BETHESDA, MARYLAND 20205

Abstract

It has recently been suggested that affinity chromotography can be used to
measure rate constants from parameters determined from the elution curve.
The analysis suggesting this possibility assumes that there is one type of reaction
occurring and that steric factors can be ignored. In this paper a model is
analyzed in which there can be a number of different binding sites. If one
waits long enough, the resulting concentration profile tends toward a Gaussian
form. This suggests that it would be experimentally very difficult to distinguish
between single site and multiple site systems. Since steric factors undoubtedly
operate, they would change the single site to the multiple site system. The
implication of the analysis is that the proposed experiment does not necessarily
measure the rate constants of interest.

Giddings and Eyring appear to have been the first to analyze a stochastic
model for elution chromatography (). Subsequent studies of equivalent
or similar models were made by MacQuarrie (2) and Weiss (3). Continuum
models somewhat similar to the stochastic theories were analyzed by Bak
(4), van Holde (5), Cann, Kirkwood, and Brown (6), and undoubtedly
many others. More recently Denizot and Delaage have given results for
the original Giddings-Eyring model for the purpose of deriving Kinetic
parameters using affinity chromatography (7). Most of the authors cited
above work with the two-state model in which the molecule being analyzed
is assumed to be in one of two phases: mobile or stationary. MacQuarrie
(2), Weiss (3), and Giddings (8-10), have also presented results where
n > 1 different kinds of binding can take place. The experiment suggested
by Denizot and Delaage suggests that kinetic parameters can be deter-
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mined from the elution profile. An alternative technique which would be
more accurate for analytic purposes is that of the scanning experiment
rather than the elution method. Although scanning techniques have not
been applied to affinity chromatography, they have been successfully
developed for gel chromatography by Ackers and his collaborators (/7).

Ideally, one would like to take steric factors into account in describing
the motion of a molecule through the chromatographic column. This is
clearly impossible in detail. Therefore, in order to take some account of
these factors, a model will be adopted in which there are # different types
of binding sites. In addition to allowing variations in the rate constants,
the order of the reaction at each binding site will be allowed to be arbitrary,
in contrast with earlier models that assume only first-order reactions. The
variations in model parameters give a phenomenological representation of
the effects of steric factors on the chromatographic kinetics. The customary
assumption of first-order kinetics would seem to ignore steric factors
related to gel geometry. A further assumption in the analysis is that
molecules in the mobile phase do not necessarily travel at constant speed.
Under these circumstances, if it is further assumed that successive sojourns
in the mobile and stationary phases are for a finite average time, then
when the number of binding events is large in the traversal of a column,
the concentration profile for a single species tends toward the Gaussian
form independent of the sojourn time distributions. With this simplifica-
tion it becomes relatively easy to calculate the parameters determining the
observed concentration profile and its development in time. It is assumed
that the column has uniform properties, and that there are n > 1 different
types of binding sites. As in the analyses cited above, it is assumed that the
course of motion of a molecule through the column can be described as
a succession of sojourns in the mobile and stationary phases, the time of
each sojourn being a random variable. Let the probability that a single
sojourn in the stationary phase will be between r and ¢ + dr and that
termination occurs by binding to a site of type j be a{¢) df. For example,
if the binding events are first-order reactions with rate constants &, k,, ...,
k,, then

ajt) = kjexp[—(k; + ky + -+ + k)t] 4y
Notice that

jo a(t) dt = f; @
where f; is the probability of binding to a j-site. The probability density

for a single sojourn on a j-site will be denoted by B;(z). For first-order
processes with rate constants ki, k3, ..., k,, 1) = kjexp (—kjt). The
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probability that the displacement of a molecule in a single sojourn in the
mobile phase lasting for a time ¢ will be between x and x + dx will be
denoted by g(x, t) dx. When a molecule in the mobile phase is assumed
to move at uniform speed v, as is the case in the Giddings-Eyring model,
then

g(x, t) = 8(x — vt) &)
where 8(u) is the Dirac delta function. When the displacement occurs by
means of a combination of constant convection and diffusion,

1 (x — vt)?
g(x, t) = W exp [__—TD—Z—]

More generally, it will be assumed that the average displacement in time ¢
will be proportional to time, i.e.,

)

r xg(x, £) dx = vt )

-~

and that the variance of displacement is also proportional to time,

00 = |

The form of g used in Eq. (3) leads to ¢(¢r) = 0 while that in Eq. (4)
allows us to interpret D as a diffusion constant.

The idea behind the following calculation is straightforward. The total
displacement at time ¢ can be written

(1) = xy + X2 + 0+ X + 2() @)

x%g(x, t) dx — v¥? = 2D¢ ®)

0
-

where x,, is the displacement in the mth completed sojourn in the mobile
phase (which starts at the time at which the molecule enters the mobile
phase for the mth time, and ends at the immediately following trapping),
J(1) is the total number of complete cycles (a sojourn in the mobile phase
followed by a sojourn in a stationary phase), and y(¢) is the displacement
in any uncompleted cycle. Let us assume that the sojourn times in both
the mobile phase and in the stationary phases have finite first and second
moments. This is a plausible assumption in the context of chromatography,
but is not necessarily valid for hopping transport in solids (/2-15). The
process defined in Eq. (7) is a cumulative process in the sense of Smith
(16-18), so that we may adapt results that have been proved by him and
others (19). Let t denote the average time spent in a complete cycle, let
o%(t) denote the variance of this time, let x be the average displacement in
a single cycle, let o%(x) be the variance of that displacement, and let
cov (x, t) be the covariance of displacement and time. These quantities
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will be calculated from the underlying model parameters after the results
implied by Smith’s analysis have been stated.

The results to be given are valid in the limit of a large number of
trappings. More precisely, they are valid when ¢/ > 1 where ¢ is the
average cycle time. Smith has shown that the first two moments of x(¢)
are, asymptotically,

x(t) ~

“‘IXI

=2 -
a*(x(t)) ~ {az(x) + al(t);% - 2? cov (%, z)}% ®)

plus terms that are small with respect to #/f. Furthermore, x(¢) has an
asymptotic Gaussian distribution with parameters given in this last
equation. We therefore know what to expect on a macroscopic level. Next
we must translate the parameters of the microscopic model into those
appearing in Eq. (8). If the probability density for the time in a complete
cycle is denoted by A(¢), then, by our definitions,

h(t) = é ﬁ (OBt — 7) di ©)

The joint density for the displacement in a single cycle, x, and the cycle
time is
n t
flx, 1) = Z jo g(x, Doy (1)B(t — 1) dr (10)

since motion only occurs in the mobile phase. These last two formulas
enable us to calculate the parameters that appear in Eq. (8). If we define
moments of the components of cycle time as

r ta ) dt = ;1] r t"B(tydt = (T;y an
(V] (1]

then
= Y AT +T). 0= S AT+ TR -7 (12)
i=1 i=1

It is convenient to define the following moments averaged over all types
of cycles:

T =S4T @Y =3ATF  TT=Y0T; )
J J
in terms of which Eq. (12) can be rewritten
i=T+T, oXt)=cXT)+ o¥T) (14

The calculation of moments of displacement is just slightly more
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complicated. Let us, for example, consider the evaluation of the expression
for x:

%= .[: dt '[: Xf(x, 1) dx = ngl j: dt J'; w Bt — Ddr (15)

This latter expression can be written in terms of Laplace transforms
evaluated at s = 0. It we set

a;(s) = ,[o e "tay(t) dt, ,B;'(s) = J'o e "'p(t)dt (16)
then X takes the form
=T an

n do*
X=—v *Gs —’-)
£ (o).
since f;%(0) = 1. This result together with Eq. (15) implies

_ vT
where 0 < 8 < 1. This intuitively reasonable result indicates that the
motion of the peak is slowed up by time spent in the trapped state. The
calculation of a2(x(t)) is only slightly more complicated and leads to the
expression

= Qut (18)

o¥(x(1)) ~ {(2DT + v}[(T — O)T — 0T 1} (1/D) 19)

where @ is defined in Eq. (18). We see that there are two contributions to
the variance, the first being that due to diffusion and the second being that
due to trapping processes that occur as the column is being traversed.
Furthermore, the parameters appear only in the form of lumped moments,
T T, T?, (T’)_"F and T'T, so that contributions from the different sites
cannot be distinguished in the Gaussian limit.

As is the case in elution chromatography, it would be experimentally
impossible to distinguish between single and multiple site trapping
without starting from a detailed theory of the transient processes. Thus
it would appear that unless one could demonstrate independently of the
chromatographic experiment that the single site model is an adequate
description of what is going on in the column, and that steric factors are
negligible, it would be unwise to use affinity chromatography to measure
rate constants as suggested by Denizot and Delaage. The quantities
measured in this way would be a complicated combination of many
factors involving both local geometry and the rate constants.
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